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Abstract. In this paper, we develop a theoretical analysis of the synchronization of two coupled
systems by self-feedback. By means of Lyapunov direct method, we reveal some mechanisms
for synchronization and present some criteria for synchronizability, which can be used to deal
with a wide range of systems.

1. Introduction

The synchronization of two nonlinear dynamical systems is a phenomenon of importance
in a wide range of applied sciences, and has received much attention and investigation in
the past decades [1–7]. In particular, it has been shown recently that two identical systems,
or homosystems, can be synchronized by some form of coupling. One common procedure
is to introduce a self-feedback of the formk(x − y), i.e. the difference between the current
states of the two systems is used as an inhibitory effect on the separation of orbits. Much
work, mainly numerical, has been done along these lines [8–12].

The purpose of this paper is to develop a mathematical theory for this phenomenon
with the hope that one would be able to gain greater understanding of the mechanimisms
underlying synchronization and to cope with a broader range of systems.

2. Preliminaries

Consider two systems described by ordinary differential equations

ẋ = f (x, α) x = (x1, · · · xn) ∈ Rn (1)

ẏ = g(y, β) y = (y1, · · · yn) ∈ Rn f, g ∈ C1(Rn, Rn) (2)

whereα andβ are parameters which can be controlled in practice. The coupling of the two
systems is described by

ẋ = f (x, α)+ η(x − y)
ẏ = g(y, β)+ ξ(x − y)

(3)

whereη and ξ are called coupling functions. In practice,η and ξ usually have the form
k(y − x) and k(x − y), respectively, wherek and k are diagonal matrices with positive
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elements. The maxki(1 6 i 6 n) and maxki(1 6 i 6 n) are called the coupling strengths
of k andk, respectively.

Definition 2.1. Let (x(t, x0), y(t, y0)) be a solution to the system (3) with initial values
(x0, y0). If x(t, x0) = y(t, y0), then(x(t, x0), y(t, y0)) is called a synchronized solution. If
|x(t, x0) − y(t, y0)| → 0 as t → ∞, then equation (3) is said to be synchronized through
the couplingη(x − y) andξ(x − y).

Since this kind of ideal synchronization cannot be fully realized in practice, a more
practical definition of synchronization should be that defined as follows.

Definition 2.2. Given anε > 0, if ‖x(t, x0) − y(t, y0)‖ < ε, then (x(t, x0), y(t, y0)) is
called anε-synchronized solution. (or noisy synchronization as called in [12]). If there
existsT > 0, such that|x(t, x0)− y(t, y0)| 6 ε for t > T , then the system (3) is said to be
ε-synchronizable byη(x, y) andξ(x, y).

In the case whereg(y, β) = f (y, α), the system (3) is referred to as two identical
coupled systems. In the case whereg is the same asf with β 6= α, the system (3) is
referred to as the coupling of two homo-systems [12]. Otherwise the system (3) is called
two coupled hetero-systems.

3. Main results

For convenience we omit the parametersα, β in the following discussion.
By making the change of variables

x = x − y y = x + y x, y ∈ Rn
we can transform (3) into

ẋ = f
(
x + y

2

)
− g

(
y − x

2

)
+ η(x)− ξ(x)

ẏ = f
(
x + y

2

)
+ g

(
y − x

2

)
+ η(x)+ ξ(x).

(4)

In view of definition 2.1, if the system (3) possesses a synchronized solutionx(t, x0) =
y(t, y0) for every initial valuex0 = y0, then the hyperplanex − y = 0 is required to be a
stable invariant manifold of (3), or equivalently the hyperplanex = 0 is required to be the
invariant manifold of the system (4).

From this observation, we have the first assertion from the first expression of (4).

Proposition 3.1. The hyperplanex − y = 0 is an invariant manifold of (3), if and only if
f andg are identical.

From proposition 3.1, we see that identity of two systems is the necessary condition for
sychronization.

Proposition 3.2. Suppose thatf andg are identical, and there exists a constantc > 0 such
that

(x − y) · η(x − y)− (x − y) · ξ(x − y) 6 −c‖x − y‖2

and

νTJf (x)ν 6 c‖ν‖2 ∀ ν ∈ Rn x ∈ Rn c < c

then the hyperplanex − y = 0 is asymptotically stable, i.e. every orbit nearx − y = 0
approachesx − y = 0 ast →∞.
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To see this, consider the derivative of the functionV (x) = 1
2‖x‖2 along the orbits of (4):

dV

dt
= x · ẋ = x ·

[
f

(
x + y

2

)
− g

(
y − x

2

)]
+ x · (η(x)− ξ(x))

= xTJf

(
y

2

)
x − c‖x‖2+O(‖x‖3). (5)

In the light of the stability theory of dynamical systems, (5) guarantees that every orbit with
an initial value sufficiently nearx = 0 will approach it, which is what we hope for.

Denote1
2(Jf (y/2)+ Jf (y)T) by A(y). Clearly from (5) we have the following result.

Proposition 3.3. Let λmax(y) be the maximal eigenvalue ofA(y). If λmax< c, thenx = 0
is asymptotically stable and consequentlyx − y = 0 is asymptotically stable.

Remarks. From proposition 3.2 we can see that if we want a coupling likek(x − y) to
be very weak, i.e.k can be very small, while the coupling can take effect, then we have
to impose some conditions on the original systems, say,f (x) here. One of them is that
the Lyapunov exponent with respect tof (x) is not greater than 0. Actually this is rare in
practical physical systems. However, if there exists an attractive basinB (a regionB such
that the nearby orbits will enter it ast → ∞) then some conditions can be imposed on
f (x) only in the regionB to guarantee the synchronization inB; this is usually the case in
the Lorenz system [12].

Let � be a bounded domain ofRn; to relax the idential condition onf (x) andg(x),
we only assume thatf (x) = g(x), ∀ x ∈ � and call them�-identical systems. To establish
a criterion for synchronization in this case we first define a subset inRn × Rn as follows.

Let diag� = {(x, y) ∈ Rn × Rn|x = y, y ∈ �}, the cylinderCδ being defined as
Cδ = {p+ tn| p ∈ diag�, 06 t < δ}, wheren is a unit vector perpendicular to diag�.

Now we have the following proposition.

Proposition 3.4. Suppose that (i) the coupling functionsξ andη satisfy

(x − y) · η(x − y)− (x − y) · ξ(x − y) 6 −c‖x − y‖2 c > 0.

(ii) f (andg) satisfies

νTJf (x)ν < c‖ν‖2 x ∈ � ν ∈ Rn.
(iii) f (x) ·e > 0, ∀ x ∈ ∂�, where∂� is the boundary of� in Rn ande is the unit normal
vector field on∂� which points inward. Then (1) and (2) can be synchronized byη andξ
in diag�.

This proposition can be roughly proved as follows. On the one hand, from conditions
(i)–(iii) it follows that there exists aδ > 0 such that the cylinderCδ defined above is
an attractive basin: every orbit with initial point sufficiently nearCδ will enter Cδ and
remain in it. On the other hand, these conditions guarantee that no set inCδ other than
that contained in diag� can be an invariant set under the flow of (3). Now the invariance
principle in the stability theory of dynamical systems [13, 14] ensures that synchronization
occurs somewhere in diag�.

Now let us see what mechanism underlies the so-calledε-synchronization. For the
functionV (x) = 1

2‖x‖2, its derivative along the orbits of (3) is

dV

dt
= x · f

(
x + y

2

)
− x · g

(
y − x

2

)
+ x · η(x)− x · ξ(x)
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= x ·
(
f

(
y

2

)
− g

(
y

2

))
+ 1

2
xT

(
Jf

(
y

2

)
+ Jg

(
y

2

))
x

+x · η(x)− x · ξ(x)+O(‖x‖3). (6)

Let Afg =
(
Jf (y/2) + Jg(y/2))T + (Jf (y/2)) + Jg(y/2)), and λmax = the maximal

eigenvalue ofAfg, supposex · η(x)− xξ(x) 6 −c‖x‖2. If λmax< 2c, then

dV

dt
6 ‖x‖

∥∥∥∥f(y2
)
− g

(
y

2

)∥∥∥∥− (c − 1

2
λmax

)
‖x‖2+O(‖x‖3)

so, if we want (1) and (2) to beε-synchronized, thenf (x) − g(x) must satisfy‖f (x) −
g(x)‖ < (c − 1

2λmax)ε somewhere in the synchronized region.
All of this can be put in the following proposition.

Proposition 3.5. A necessary condition that (1) and (2) can beε-synchronized in a region
� ⊂ Rn by the coupling functionsη andξ is that

|f (x)− g(x)| < b(λmax, c)ε

whereb is a number dependent onλmax and the coupling strengthc.

Therefore if we want two systems to beε-synchronizable in a region, then we must be
sure that the difference between the two systems is ‘as small asε’ in this region.

Mathematically, we can have a more general theorem which can easily be proved by
means of stability theory.

Theorem. Let V (x) : Rm → R be a positive definite function, i.e.V (0) = 0, V (x) > 0,
x 6= 0. Given two desired coupling functionη(x) and ξ(x), if there exists such a positive
definite functionV (x) such that the derivative ofV (x) along (4) satisfies

(i)
dV

dt

∣∣∣∣
(4)

= gradV ·
[
f

(
x + y

2

)
− g

(
y − x

2

)]
+ gradV · [η(x)− ξ(x)]

6 −U(x)
where gradV = (∂V/∂x1, . . . , ∂V/∂xn), andU(x) : Rn → R is also a positive definite
function. Then (1) and (2) can be synchronized byη(x − y) andξ(x − y) in the case off
andg are identical;

(ii)
dV

dt

∣∣∣∣
(4)

< 0 ∀ |x| > ε

then (1) and (2) can beε-synchronized byη(x − y) andξ(x − y).
Remarks. What we have discussed up to now is just local (ε)-synchronization, i.e. the
asymptotic properties of the solutions of (3) in the vicinity of the planex = y. We hope
to know what can be said about global (ε)-synchronization, and this is another theme to be
discussed later.

4. Applications to chaotic system

In this section we utilize what was developed in section 3 to dicuss synchronization in
chaotic systems instead of the usual numerical methods. To save tedious calculation, we
just give an outline of the discussion.
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Consider the Lorenz system

ẋ = σ(y − x)
ẏ = rx − y − xz
ż = xy − bz

(7)

and its copy system with feedback

ẋ = σ(y − x)+ c(x − x)
ẏ = rx − y − x z+ c(y − y)
ż = x y − bz+ c(z − z).

(8)

Let us see for whatc the synchronization occurs between (8) and (7).
As shown by Sparrow [15], the ellipsoidE defined by

A = rx2+ σy2+ σ(z − 2r)2 6 m+ ξ(ξ = constant> 0)

is an attractive bounded invariant set, wherem(r, σ ) is the maximum value ofA on the full
ellipsoid bounded by

rx2+ y2+ b(z − 2r)2 = 4br2.

Now for (7), we have

Jf (x) =
 −σ σ 0

r − z −1 −x
y x −b

 . (9)

The maximum eigenvalue of(Jf (x)+ (Jf (x)T)/2, denoted byλmax(σ, r, b,m+ ξ), can be
calculated. Now takec > λmax(σ, r, b,m+ξ) in (8). It follows from proposition 3.3 and its
ensuing remarks (or proposition 3.4) that (8) can synchronized with (7) inE for c chosen
above.

The ε-synchronization is more practical; however, little theoretical work has been done
on this problem as far as we know. Here we touch on it.

Consider a homosystem of (7) with feedback

ẋ = σ(y − x)+ c(x − x)
ẏ = r x − y − x z+ c(y − y)
ż = x y − b z+ c(z − z).

(10)

Then in terms of (3), we have

‖f − g‖ 6 ((σ − σ)2+ (b − b)2+ (r − r)2)1/2
d

onE∪E, whereE andE are ellipsoids corresponding to two groups of parametersσ, r, b, σ ,
r andb, respectively, andd is the diameter ofE ∪ E.

Keeping in mind that the smaller the difference between the two groups of the parameters
the smaller the diameterd, so we can fixd for givenE andE, then the homosystem (10) can
hold uniformly in the case of the smaller difference between the two groups of parameters.

Denote byλmax the maximal eigenvalue ofAfg overE ∪ E, whereAfg is defined as
in (6), take a proper coupling constant 2c > λmax. If

((σ − σ)2+ (b − b)2+ (r − r)2)1/2 < (c − λmax/2)ε/d

then in the light of proposition 3.5 and the arguments preceding it, (9) canε-synchronize
with (7).
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